行业新闻

碳化硅第三代半导体时代的中国机会

发布时间:2022-10-05 04:42:22 来源:BOB体育投注官网下载 作者:BOB体育投注登录

  5G通信、电动汽车等新兴产业对碳化硅材料将产生巨大需求,大力发展碳化硅产业,可引领带动原材料与设备两个千亿级产业,助力我国加快向高端材料、高端设备制造业转型发展的步伐。

  今年发布的“‘十四五’规划和2035年远景目标纲要”提出,我国将加速推动以碳化硅、氮化镓为代表的第三代半导体新材料新技术产业化进程,催生一批高速成长的新材料企业。

  科技日报记者7月18日对业内专家进行采访时发现,他们对我国第三代半导体的发展持积极态度,并认为第三代半导体材料或许可为我们摆脱集成电路被动局面、实现芯片技术追赶和超车提供良机。

  半导体产业发展至今经历了3个阶段,第一代半导体材料以硅为代表;第二代半导体材料砷化镓也已经广泛应用;而以碳化硅为代表的第三代半导体材料,相较前两代产品性能优势显著。

  碳化硅又称碳硅石,是在大自然中也存在的罕见矿物,工业上以石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。

  山西烁科晶体有限公司(以下简称山西烁科)生产部经理、高级工程师毛开礼介绍,碳化硅有非常独特的性能优势。它拥有宽禁带,使得单个器件可以承载上万伏电压;热导率高,工作可靠性强;载流子迁移率高、工作频率大,省电节能。这些优势让碳化硅材料的性能呈现指数级提升,用途也更为广泛。

  碳化硅是卫星通信、高压输变电、轨道交通、电动汽车、通信基站等重要领域的核心材料,尤其是在航天、国防等领域有着不可替代的作用。

  据中金企信国际咨询发布,目前我国在5G通信、电动汽车等新兴产业的技术水平、产业化规模等方面都处于国际优势地位,将促进我国上游半导体行业的持续发展,进一步提高国内半导体企业在国际市场的影响力,尤其对碳化硅器件将产生巨大的需求。

  毛开礼告诉记者,N型碳化硅晶片可用于制造电动汽车等领域。据介绍,目前的电动汽车续航能力还是个问题。如果用上碳化硅晶片的话,就能在电池不变的情况下,使汽车的续航力增加10%左右。虽然碳化硅在电动汽车上的应用才刚刚起步,但每生产一辆电动汽车,至少要消耗一片碳化硅,按照我国电动汽车保有量每年增长70%的速度来看,碳化硅仅在电动汽车领域就将带动一个千亿级的产业集群。

  山西烁科总经理李斌告诉记者,现在碳化硅产业正处于高速发展时期,大力发展碳化硅产业,可引领带动原材料与设备两个千亿级产业,助力我国加快向高端材料、高端设备制造业转型发展的步伐。

  今年1月,湖南省首个第三代半导体产业园及国内首条碳化硅研发生产全产业链产线封顶。据介绍,该项目主要包含碳化硅长晶、衬底、外延、芯片、器件封装等厂房及相关配套设施建设,项目全面建成投产后,将形成碳化硅研发和生产全产业链两条生产线,生产可广泛用于新能源汽车、高铁机车、航空航天和无线通信等领域的高质量、低成本、高稳定性碳化硅衬底及各类器件。全部建成后预计可实现年产值120亿元以上,并可带动上下游配套产业产值预计超1000亿元。

  碳化硅单晶的制备一直是全球性难题,而高稳定性的晶体生长工艺则是其中最核心的技术。之前,这项技术只掌握在美国人手里,且长期对我国进行技术封锁。我国半导体材料长期依赖进口,由此带来的问题就是半导体材料价格昂贵、渠道不稳,随时都可能面对断供的风险,而且产品的质量也难以得到有效保证。

  李斌介绍,碳化硅晶体的生长条件十分严苛,不仅需要经历高温还需要压力精确控制的生长环境,同时这些晶体的生长速度很缓慢,生长质量也不易控制。在生长的过程中即便只出现一丝肉眼无法察觉的管洞,也可能影响晶体的生长质量。碳化硅晶体的生长过程就如同“蒙眼绣花”一样,因为温度太高,难以进行人工干预,所以晶体的生长过程十分容易遭到扰动,而如何在苛刻的生长条件下稳定生长环境,恰恰是晶体生长最核心的技术。要想生产出高质量的碳化硅晶片,就必须攻克这些技术难关。

  山西烁科经过反复钻研攻关,最终完全掌握了这项技术,打破了国外垄断,实现了高纯度碳化硅单晶的商业化量产。现在,山西烁科碳化硅半导体材料产能国内第一,市场占有率超过50%。

  山西烁科粉料部经理马康夫介绍,碳化硅晶片之所以如此珍贵,除了它应用范围广泛外,还因为其生产技术非常不易掌握。一个直径4英寸的晶片一次可以做出1000个芯片,而直径6英寸的晶片一次则可以做成3000个芯片。但从4英寸到6英寸,晶体的生长是最难破解的关键技术。

  碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还拥有很多用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或汽缸体的内壁,可提高其耐磨性而延长使用寿命1—2倍;用以制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好;低品级碳化硅(含碳化硅约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量;此外,碳化硅还大量用于制作电热元件硅碳棒。

  李斌分析认为,目前碳化硅产业原材料占企业成本的65%,到2025年,仅山西烁科一家企业的原材料需求就可达6.5亿元左右。

  今年以来,有10多个碳化硅项目在全国各地开工或取得积极进展,可谓遍地开花:露笑科技在安徽合肥投资100亿元,发展碳化硅等第三代半导体材料的研发及产业化项目,还投资7亿元在浙江绍兴建成了碳化硅衬底片项目;华大半导体在浙江宁波投资10.5亿元的项目,计划年产8万片4—6英寸碳化硅衬底及外延片、碳化硅基氮化镓外延片;中科钢研在山东青岛建成集成电路产业园,有望打破碳化硅晶体衬底片依赖进口的局面;ROHM-臻驱科技在上海联合成立的实验室,致力于开发、测试及推广以碳化硅为基础材料的功率半导体技术……

  毛开礼表示,虽然碳化硅可被应用于新能源汽车、高铁机车、航空航天和无线通信等多个领域,可谓“万物皆可碳化硅”,但碳化硅的市场潜力还远未被挖掘,如果从产业链中游来看,我国第三代半导体器件市场有着巨大的增长空间,或能成为倒逼上游材料发展的一大动力。

  “裸眼3D电影、8k高清电影院、胶片电影4k修复、动态电影海报”等“电影黑科技”悉数亮相北京服贸会。

  【服贸会“云探馆”】数字释放文创潜能 裸眼3D交互空间成“服贸会”热门打卡地

  本届服贸会围绕“数字赋能文旅发展,文化创新美好生活”为主题, 元宇宙和数字化则将成为本届文旅服务专题高频词。

  作为凝聚全球合作共识、促进国际交流合作的重要平台,本次服贸会的展览面积和线下参展企业数量均超过上届,整体展览展示面积达到15.2万平方米,将有2400余家企业线下参展,来自全球服务贸易的多种新产品、新技术、新场景、新应用得到展示。

  记者在服贸会首钢园区的元宇宙展区探馆发现,工业元宇宙已经在工业领域中得到应用和拓展,工业制造正为元宇宙落地提供“沃土”。

  美国国家海洋和大气管理局(NOAA)8月31日发布的《年度气候状况报告》称,2021年地球大气中温室气体浓度和海平面均创下新高,表明尽管人们在努力遏制温室气体排放,但气候变化趋势仍未减缓。

  9月1日,我国神舟十四号航天员陈冬、刘洋顺利走出舱门,这是中国航天员首次从空间站出舱主通道——问天实验舱气闸舱迈入太空。然而细心的小伙伴们会发现,历次航天员出舱画面中,航天员身后的星空背景居然一片漆黑,浩瀚星空中的星星都去哪儿了?

  国家公园是全球自然保护地的重要类型,不仅是维护国家自然生态系统平衡和生物多样性的自然保护地,也是为国民提供生态游憩、科普启智和科学研究的公共区域,更是彰显一个国家和地区文明形象乃至国家精神的重要窗口。

  2.8万亿元!这是《2021年全国科技经费投入统计公报》(以下简称《公报》)于8月31日发布的去年我国全社会研发经费投入总量。这一数字较上年增长14.6%。同时,中国作为全球第二大研发经费投入经济体,连续6年保持两位数增长,也为全球研发经费增长作出重要贡献。

  多彩的“一带一路”沿线国家文化风情,炫酷的元宇宙技术,逼线年服贸会开放首日,位于北京首钢园展区1号馆和2号馆的文旅服务专题展人气爆棚,观众排起了长队,在丰富的文旅新体验中尽情释放对“诗与远方”的热情和渴望。

  当前我国新能源汽车市场渗透率已达21.6%,实现从无到有的跨越,“下半场”的比拼,战幕已开。用户越来越多,如何从“有”到“好”——解决“安全、续航里程、快速充电”这三个“痛点”?

  本次评选共征集了125项候选技术,由世界新能源汽车大会科技委员会的31位国内外知名专家学者,经过评审,以下八项前沿技术和八项面向量产应用的创新技术脱颖而出。

  这可是一个发射重量达到23吨的“大家伙”。“这块头和分量,相当于北京地铁13号线列车的一节车厢。”航天科技集团五院问天实验舱总体系统主任设计师张峤为它精准画像。

  全球首座以合成生物为主题的科普展馆8月30日在有“中国药谷”之称的北京市大兴区生物医药产业基地揭牌。

  国家统计局、科学技术部和财政部联合发布的《2021年全国科技经费投入统计公报》显示,2021年我国研究与试验发展(R&D)经费投入总量为2.8万亿元,比上年增长14.6%,增速比上年加快4.4个百分点,已连续6年保持两位数增长。

  一段时间以来,科普要从“知识补课”转向“价值引领”这一理念得到广泛的认同与落实,尤其是在网络已经成为公众获取科技信息重要渠道的时代背景下,科普的功能不仅仅是传播科学知识,更要超越到科学知识之上——转向科学理性的养成、科学思维的培养和科学精神的弘扬。

  在近日发表于《自然—神经科学》的一项新研究中,美国波士顿大学认知神经学家Robert Reinhart和同事证实,连续几天用弱电流反复刺激65岁以上成年人的大脑,可以使其记忆力持续改善长达一个月。

  以瑞士苏黎世理工大学为首的一个国际研究小组利用人工智能算法观察到月球上的永久阴影区。该人工智能有望“照亮”永久的阴影区,尤其是那些尽管旋转但自然阳光仍无法到达的区域。这项近期刊载于《地球物理研究快报》上的研究也包含在美国国家航空航天局(NASA)“阿尔忒弥斯1号”任务计划中,有助于为其将来的登月计划确定着陆点。